Posts Tagged “rheumatoid arthritis”

Did you see some one before who can fly without wings or move without legs? You will answer : definitely no, but I know someone, or better yet some living thing, who can do just both and it is called Borrelia burgdorferi; let’s share its story. It is a loosely coiled bacterium belonging to a class called spirochetes (moving bacteria).

Borrelia burgdorferi

Borrelia burgdorferi

Borrelia burgdorferi is motile through the undulation of its axial filaments. It is transmitted to humans by the bite of infected ticks (Ixodes scapularis and Ixodes pacificus) and cause a serious progressive disease called lyme disease.

The story of lyme disease began in 1975 when a mother, with her children in lyme city in the United States, was admitted to a hospital with signs of rheumatoid arthritis. It was a mysterious case until the discovery of Borrelia burgdorferi and that is how the disease got its name, when it was discovered in 1982. Symptoms and signs of lyme disease can be categorized into three phases:

Phase (1): An early localized skin rash, characterized by inflamed red edges with a clear white center at the site of insect bite, appears and is called “erythema migrans“.

Erythema_migrans

Erythema migrans

Phase (2): The rash resolves as the bacteria begin to move into the blood stream towards their target organs like large joints, heart, and nervous system.

Phase (3): Inflammation of heart muscle leads to abnormal rhythm, meningitis, confusion and finally arthritis.

Treatment in the early phase is an easy mission by amoxicillin or doxycycline, orally for few weeks. However, the recommended regimen in late stages include parenteral ceftriaxone, analgesics to control the severe pain, and anti-inflammatory drugs, usually required for months .

Images credits:
Borrelia burgdorferi: http://www.wadsworth.org/databank/hirez/hechemy2.gif
Erythema migrans: http://phil.cdc.gov/PHIL_Images/9875/9875_lores.jpg

Tags: , , , , , , ,

Comments 2 Comments »

Not too long ago, I read about a research done at the Kennedy Institute of Rheumatology Division, which has identified a new ligand for Toll-like receptor 4. This receptor was previously known for activating the immune system through the detection of threats as lipopolysaccharide or gram-negative bacteria. The new ligand, Tenascin-C, is an extracellular glycoprotein, whose elevated expression in cases of inflammation provoked scientists to study its role in the process. Hands of a person suffering from rheumatoid arthritis

The study noted that its presence was critical to maintain the ongoing inflammation seen in cases of rheumatoid arthritis. In reference to this study, the author stated “We have uncovered one way that the immune system may be triggered to attack the joints in patients with rheumatoid arthritis. We hope our new findings can be used to develop new therapies that interfere with tenascin-C activation of the immune system and that these will reduce the painful inflammation that is a hallmark of this condition”

I was able to contact Dr Kim Midwood and obtained this brief interview:

1. Do you have any speculations as to why Tenascin-C is overly expressed in certain individuals causing prolonged inflammation cases, whilst remaining within normal levels in others?

What regulates tissue levels of tenascin-C is not currently known and this is something that we are working on finding out.

2. From the different ligands of TLR4, why was Tenascin-C of particular interest in your research?

I have a long standing interest in how cell behavior is influenced by the extracellular environment, and in particular the role of extracellular matrix proteins in regulating cell phenotype during the response to tissue injury.  For the last 10 years, I’ve been studying the role of tenascin-C – a protein specifically and transiently expressed upon tissue injury, but persistently expressed in chronic inflammatory diseases such as rheumatoid arthritis.  This pattern of expression, plus the high homology of tenascin-C domains to other known pro-inflammatory matrix molecules or  ‘DAMPs’ prompted us to investigate whether tenascin-C was an endogenous activator of the immune response and whether its persistent expression in RA contributed to disease pathogenesis.

3. What do you think the extent of similarity will be between the mice & human response to the Tenascin-C blockage?

I cannot predict how differently the mouse and human will behave.

4. Do you suspect a certain mechanism of the increase in inflammatory molecules caused by Tenascin-C?

We know that tenascin-C activates TLR4, activation of this receptor is well known to induced the expression of pro-inflammatory genes via activation of many intracellular signaling pathways.

5. How do you see the potential of such study for rheumatoid arthritis patients?

We plan to identify ways to inhibit the pro-inflammatory action of tenascin-C in the hope that this may be useful in reducing chronic inflammation in the joint.

Original research paper: Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nature Medicine 15, 774 – 780 (2009). PMID: 19561617 (Vote for the abstract on Biowizard)

Image Credit: Davidson College Undergraduate Course

Tags: , , , , , , , , , , , , ,

Comments No Comments »

Researchers at Penn state discovered two new proteins which activate cells in the immune system & cause a rare form of blood cancer.
Helper T-cells can stimulate B lymphocytes to produce antibodies against the pathogen. Also, stimulate cytotoxic T-cell that kills infected cells.
Shortly after the elimination of pathogen, most of cytotoxic T-cells die while few of them remain to protect the body from re-infection with the same pathogen.
In some cases of autoimmune diseases these cells don’t die, but they expand & attack many tissues as bones to cause rheumatoid arthritis “RA” or bone marrow to cause leukemia.
Immune Response
Researchers at Penn state tried to find out conditions that cause abnormal expansion of these cells, they made an intricate computer modeling which follows up signals involved in either activation or death of these cells.

The researchers have found two proteins “IL-15 and PDGF” which are needed to cause activation & proliferation of T-cells. IL-15 causes activation, while PDGF stimulates their growth.A macrophage of a mouse stretching its

Another signaling protein called “NFκB” controlled by the two proteins which prevent the death of cancer cells whatever they are over expressed.All those proteins may become targets for drugs; when they blocked NFκB with drugs in cells from leukemia patients, an increase in mortality of abnormal T-cells has been observed.

So, the key is to find out what stimulates T-cells to survive & proliferate.

Source: Science Daily.

Image credits:  Immune response.

 

Tags: , , , , , , ,

Comments No Comments »


StatCounter